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Abstract 
 

This report describes the research results under the AFRL grant FA8750-08-1-0223. During the 
first summer (2008) of the intended three-year project, the focus of our effort is to study issues 
regarding robust resource allocation in air operations robust tasking in wireless airborne 
networks.  
 
For the robust resource allocation, model uncertainties are considered in the generation of a state-
based control policy at the strategic level in an air operation. A generic model is used to explain 
the aspects of modeling, control design, and implementation. Uncertainties are introduced into the 
transition-rates of the strategic model. A robust and constrained bilinear control problem defined 
on a probability simplex is solved approximately using a receding horizon control scheme. 
Results obtain previously are show to be robust to uncertainties in the opposing forces abilities. 
 
For robust tasking of wireless airborne networks, we establish a framework suitable for the design 
of tasking policies for clustered cooperative activities in a dynamic uncertain environment. Since 
secure and reliable communication is essential in this setting, tasking is confined to that relevant 
to clustered cooperative communications.  In particular, we have set up a multiple objective 
cross-layer optimization framework to compare various multi-hop clustered cooperative 
transmission schemes. Within this framework, parameters such as cluster size, transmission 
power and hop patterns can be optimized to enhance signal-to-noise plus interference ratio 
(SINR), transmission throughput and anti-jamming capability, under the constraint on ISR 
coverage and network reliability. 
 
Our analysis and simulation results indicate that the optimization is in favor of smaller cluster 
size and shorter transmission distance. This complements the outcome of network reliability 
optimization which is in favor of larger cluster size and with longer transmission distance under 
the assumption of low channel failure probabilities. Such early results show that robust tasking of 
wireless airborne networks is a problem well deserving further investigation. 
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1.  Robust resource allocation in an air operation model 

1.1 Introduction 

 
When planning a strategic air operation involving two opposing forces (Blue and Red), the model 
is often viewed as an open-loop process implied by its name [4]. In previous work, [19], an entire 
military air operation is encompassed into a two-level, two-timescale system. In [20], sub-optimal 
open-loop and closed-loop control policies are found assuming exact knowledge of the 
underlying air-operation model. However, model inaccuracies exist due to inaccurate or 
unavailable knowledge of the operations dynamics. Often little data regarding the opposing force 
is available. In this paper model inaccuracies are accounted for, and robust control policies are 
solved. 
 As in previous work [19, 20], a discrete state variable at the strategic operation level 
takes the form of the composition of four binary variables (Blue threatened, Blue defeated, Red 
threatened, and Red defeated). Despite the small number of strategic states, separating the slower 
strategic process resolves the stiffness problem caused by differing timescales of a strategic 
operation and a tactical operation. As a result, the faster tactical process can be modeled with 
greater accuracy, where the state variables take the more conventional forms of asset location, 
asset strength, their rates of change, etc. In this framework, the strategic state variable enters a 
tactical operation model as a symbolic parameter, whereas the dynamic effects of the tactical 
operation are represented by a set of transition coverage parameters that affect the state transition 
rates in the strategic model. 

A bilinear system in a probability simplex naturally results from the strategic model. 
Between the two absorbing states representing Blue‘s win and Red‘s win, respectively, the 

control objective is to drive the state trajectory to the highest probability that Blue wins, as 
illustrated in Fig. 1. Uncertainties are introduced into the rates surrounding the stochastic model. 
The application of receding horizon control [11, 16] is investigated. Robust receding horizon 
control algorithms are well known for linear systems [5, 2]. However, the air-operation model 
discussed here is non-linear. 

A variable 
substitutiolinearizes the nonlinear 
terms determining the dynamics of 
the system. Although control variable 
constraints on the system remain non-
convex, the linearized dynamics allow 
consideration of uncertainties within 
the model. By exploiting the structure 
of the system, the optimization 
problem is further simplified resulting 
in a problem that grows linearly with 
the horizon length. Robust solutions 
are calculated in both open-loop and 
state-feedback. The solution found in 
[20] is shown to be resilient to the 
uncertainties introduced. 

 
 
 
 
 

 
Figure 1 Concept of control to win on a probability 
simplex. 
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The paper is organized as follows. Section 1.2 details a strategic model in a form suitable 

for control purpose and examines some basic properties of the model. Section 1.3 formulates and 
solves a receding horizon control problem based on the strategic model. Simulations of the 
optimal policy are conducted with and without state variable feedback. Section 1.4 presents the 
results and compares the performance when considering model uncertainty. Conclusions are 
drawn in Section 1.5, and the possibility of further work is presented. 

 

1.2 Modeling for Control 

 
This section presents a strategic model derived from two extremal models [19] of differing 
aggressiveness of Blue. With appropriate assignment of parameters, the simple model is 
sufficiently general to represent most military air operations at the strategic level with an arbitrary 
degree of Blue‘s aggressiveness relative to Red‘s. 

Unlike most existing efforts in hierarchical hybrid modeling [1], [19] focused on 
encapsulating the interactions between the strategic and the tactical operations, where the 
interactions are captured in the transition coverage parameters. This section will transform the 
transition parameters into control variables that enable dynamic strategic planning via state-
feedback, and produce a strategic model suitable for control design. 

 

1.2.1 Stochastic Model of Air Operation 

 
The strategic model is in the form of a controlled non-homogeneous Markov chain. Specifying a 
Markov chain model requires the definition of a state-space X , a probability mass distribution 

(0)  for the initial state, and a set of transition rates , '{ }x x  from x  to 'x , where , 'x x X  [7]. 
As in [19], the state-space of the strategic model is constructed from the composition of binary 
states: Blue threatened, Blue defeated, Red threatened, and Red defeated. Fig. 2 shows the rate 
transition diagram of the model. With ‗1‘ denoting true and ‗0‘ denoting false, the state space 
contains two absorbing states {0001, 0100}, representing the defeat of a force, and four transient 
states {0000, 0010, 1000, 1010}. The state-space can also be represented in decimal form as {1, 
4, 0, 2, 8, 10}, arranged from the absorbing group to the transient group in ascending order within 
each group according to the assigned decimal numbers. 

 
Figure 2 A low resolution strategic model. 
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It is assumed that the air operation always initializes to the idle state 0x  . Hence, the 
initial probability mass distribution is given by (0) (0,0,1,0,0,0)  . Arrival at one of the 
absorbing states ends the air operation. The objective of the strategic plan is to maximize Blue‘s 

probability of winning. Therefore, a victory corresponds to the arrival at the absorbing set 1x  , 
or the defeat of Red. Likewise, arrival at the absorbing set 4x   corresponds to Blue‘s defeat. 

Transition rates , '{ }x x  are traditionally determined based on the first principle in terms 
of the remaining assets [8], or derived from Poisson clock structures that define the arrivals of 
triggering events [18]. The transition rates in Fig. 2 are inherited from [19], and are shown in 
Table 1 where competition between Red and Blue is fostered by setting the rates of occurrence of 
similar events near equal. 

 
Table 1  Numerical values (in hours) for transition rates in Fig. 2. 

 
In Fig. 2, , ' ( )x xc t  denotes the transition coverage associated with a transition from x  to 

'x . It depends on the conditional probability 
'| ( )x xp t  that the transition will take place given that 

a triggering event has occurred. With , 'x x  assumed to be time invariant, , ' ( )x xc t  can be expressed 
as 

, ' '|
0

1
( ) ( ) ,

t

x x x xc t p d
t

                                                   (1.1) 

 
using the Poisson decomposition property [9]. It can be seen that 

, ' '|0 ( ) max ( ) 1x x t x xc t p t   . In 

addition, if 
'| ( )x xp t  is non-decreasing in t , so is , ' ( )x xc t . The corresponding transition rates vary 

according to , ' , '( )x x x xc t . The resulting Markov process is homogeneous only when 
'| ( )x xp t  is 

independent of time, in which case 
'| , 'x x x xp c . 

Let the elements of vector 
 

 1 4 0 2 8 10( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t     π  
 

denote the probabilities of being in a corresponding state at time t. Assume for the moment that 
all , ' ( )x xc t ‘s are independent of time. State transition matrix function ( )tP  can be determined 
through the forward Kolmogorov equation [9] 
 

( ) ( ) , (0) ,t t P P Q P I                                             (1.2) 
 

where the off diagonal elements of Q  in (1.2) are given in Table 2, and the diagonal elements are 
determined by summing up the elements in each row to zero in the transition rate matrix. The 
state probability vector can be shown to satisfy 
 

( ) ( ) .t tπ π Q                                                        (1.3) 

0,2  2,10  10,2  2,1  0,8  8,0  8,4  8,10  10,4  10,1  
.2  .2 .02 .3 .2 .02 .04 .4 .005 .05 
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Table 3 Steady-state effects of Blue‘s    aggressiveness 

with different amounts of resources. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             To gain some insight into how the strategic operation depends on the control variables, 
the results for selected constant values of 8,10 10,1, ,c c  and 2,1c  are shown in Table 3. 

Table 3 shows the effect of Blue‘s aggressiveness, modeled by 0,2 , on the outcome of 
the strategic operation. With fully adequate resources 8,10 10,1 2,1 1c c c   , the winning 
probability increases by 12%  when Blue is three times as fast in engaging itself at the onset 

0,2( 3 0.2)   . Blue‘s aggressiveness more than doubles its probability of winning with an 
increase of 141%  when resources are somewhat inadequate 8,10 10,1 2,1( 0.5, 0.8)c c c   . 

1.2.2 Bilinear and Input Constrained Design Model 

 
It can be see from Fig. 2 that all nontrivial transitions ' :8 10,10 1x x   , and 2 1  that can 
be influenced by Blue have control variables attached. When a planned action associated with a 
transition is somehow disabled, the value of the corresponding control strategic model is set to 0. 
Note that the strategic model in the form of a Markov chain describes the average stage. The 
description becomes more accurate for a particular realization if state information acquired in 
real-time is available, which allows reinitialization of the model periodically. The information on 
strategic state, however, is generally severely deficient, and the reduction of uncertainty comes at 
a cost of time required for data acquisition, processing, and decision making. An error in decision 
leads to an undesirable transition, indicated by a rate attached with a , ' , '1x x x xc c  . 

 

0,2q  0,2  

0,8q  0,8  

2,1q  2,1 2,1c  

2,0q  2,1 2,1(1 )c   

2,10q  2,10  

8,4q  8,10 8,10 8,4(1 )c    

8,0q  8,0  

8,10q  8,10 8,10c  

10,1q  10,1 10,1c  

10,4q  10,4  

10,2q  10,2  

10,8q  10,1 10,1(1 )c   

Table 2 Non-zero off-diagonal 
entries of transition rate matrix 

Q. 

 
 
 

0,2  8,10c  10,1c  2,1c  Blue 

Wins 

Red 

Wins 

0.6 1.0 1.0 1.0 0.94 0.06 
0.2 1.0 1.0 1.0 0.91 0.09 
0.0 1.0 1.0 1.0 0.84 0.16 
0.6 0.5 0.5 0.8 0.70 0.30 
0.2 0.5 0.5 0.8 0.56 0.44 
0.0 0.5 0.5 0.8 0.29 0.71 
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This paper assumes a nondecreasing temporal profile for conditional probability 
'| ( )x xp t . 

Therefore, from (1.1) control variable , ' ( )x xc t  is also nondecreasing. This is intended to capture 
the process of information acquisition and the process of execution of the strategic plan at the 
tactical level. In addition, the total rate at which , ' ( )x xc t  increases is also constrained due to 
limited resources that are allocated and the time required to estimate the strategic state. Under the 
fixed total rate, distribution of resources becomes a constrained control problem. 

Equation (1.3), that governs the evolution of strategic state probability, is now rewritten 
as 

, ' 1( ) ( ) ( ) ( ), ' |
x xct t t   π Aπ B π u A Q                                        (1.4) 

where state '( )tπ , control 

10,1 8,10 2,1( ) ( ) ( ) ( ) 't c t c t c t   u ,                                         (1.5) 

, ' 1' |
x xc A Q , and 

10 10,10 2 2,1

8 8,10

2 2,1

10 10,1

8 8,10

( ) 0 ( )

0 ( ) 0

0 0 ( )
( ( ))

0 0 0

( ) 0 0

0 ( ) 0

t t

t

t
t

t

t

   

 

 

 

 

 
 


 
 

  
 
 
 
  

B π

 
 

The bilinear model expressed in (1.4)—(1.5), is inherently a stochastic system. Therefore, 
the state trajectory that evolves on the 5-dimensional probability simplex defined by 

 
1 4 0 2 8 10[ ]( ) 1, ( ) 0,it t i               

 
always converges to a point on the 1-dimensional segment defined by 1 4( ) ( ) 1      and 

0 2 8 10 0       . The challenge is clearly seen now as how to determine a control policy 
that maximizes 

1  or minimizes 
4 . 

1.2.3 Modeling Uncertainty 

 
Previously assuming transition rates are based on known, exponentially distributed rates in [20] 
limits the analytical value of the results. Reduced modeling knowledge of the opposing forces 
results in uncertain rates with regard to Red. Hence, rates 0,8 8,0 2,10 10,2 8,4, , , , ,     and 10,4  carry 
potential uncertainties. Although practical situations may impose uncertainty on Blue‘s own 
abilities, 0,2 2,1 10,1, , ,    and 8,10  involve no uncertainty within this exercise. 
 
1.2.3.1 Uncertainties as disturbances 

 
The original proposal suggested that the uncertainties would be modeled as disturbances in the 
nominal plant. The resulting bilinear state space equation resembled 

( ) ( ) ( ) ( ) ( )t t t t  π Aπ B π u Fw                                     (1.6) 
where ( )tw  is a random, bounded uncertainty and F  is a matrix defining the effects of uncertain 
rates on the plant. 
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 The nonlinear plant hindered min-max optimization of the uncertain system. Quantifying 
the effects of disturbances on a nonlinear plant also proved difficult. Ultimately without bounding 
the sum of the disturbances to equal zero, the state-space of the system will add up to a value not 
equal to one. This was not desirable after considering that the state-space represents a probability 
space.  
 
1.2.3.2 Polytopic, bounded rates 

 

All uncertain rates, 
,x y , from state x  to y  are assumed be constrained by a box. Upper and 

lower bounds limit the uncertainty within each state transition. 
 

min max

, , ,x y x y x y                                                                 (1.7) 
 

 Modeling the rates in this manner results in polytopic uncertainties. Polytopes contain the 
uncertain set of possible states at any given time. 

 

1.3  Control of Strategic Operation 

 
Control design for a strategic model offers a way to generate a set of strategic state-dependent 
dynamic specifications to be imposed on the tactical operation, which is executed to maximize 
Blue‘s chance of winning. This section considers the formulation and solution of a control 
problem for the model described in (1.4)–(1.6). On-line implementation of the control policy and 
the performance of the controlled process are also discussed. 
 
Control Problem Formulation: An optimal control problem is formulated to be solved at each 
step of the on-line receding horizon implementation. The principles of Markov decision processes 
and dynamic programming are applied to the Markov chain model of an air operation with 
continuous control inputs instead of decision variables. A variable substitution is performed in 
order to facilitate the solution of a min-max optimization. This effectively maximizes the 
objective function for the worst case perturbation. 

1.3.1 Modeling for Dynamic Programming 

 
To facilitate analytical results and optimal solutions, a dynamic program is formed similar to a 
Markov decision process [7]. As such, the process is uniformized [7] at rate  . A cost or reward, 

( , )kC x u , is assigned to accumulate over time in each state xX  given the current control input 

ku . Instead of binary decision variables required by a true Markov decision process, control 
variables 

,x yc  determine the propagation of the chain. The cost-to-go in state ,, x kx v  is calculated 
at each step, k , of the dynamic program by [7]: 
 

, 1 , , 1( , ) ( )x k k x y y k

y

v R x p v 



 u u
X

                              (1.8) 

 
where 

, ( )x yp u  is the probability of a transition from x  to y  uniformized with rate  . 
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Due to the absorbing nature of states {1,4}, their cost-to-go values are constants 
determined prior to optimization. Hence, for the purpose of optimization, the system is reduced 
from six equations to four equations shown relaxed to inequalities by (1.11)-(1.14). The reduction 
of equations also reduces computational complexity of the resulting optimization problem. 

The dynamic programming formulation is later used for a min-max optimization step 
(1.9)-(1.19) of the receding horizon control algorithm. Either the cost is minimized or the rewards 
are maximized for the worst case disturbance. Adding state constraints to the optimization is not 
necessary because the dynamics of the process naturally constrain the state space to the 
probability plane. (1.16)-(1.19) are introduced to constrain the control input. It must be non-
decreasing, (1.18), limited in its rate of increase by u , (1.16), no larger than one (1.17), and 
initially equal to its current value (1.19). 

 
'

0 0max min
u

π v                                                                                                                (1.9) 

 
,Subject to:  (blue wins| ) for {0,2,8,10}.i N Nv P x i i                                                        (1.10) 

0,2 0,8 0,2 0,8

0, 1 0, 2, 8,1 ,k k k kv v v v
   

  


 
    
 

                                                   (1.11) 

2,1 2,10 2,10 2,1 2,1, 2,1 2,1,

2, 1 2, 10, 0,

(1 )
1 1 ,

k k

k k k k

c c
v v v v

    

   


  
     
 

                (1.12) 

8,10 8,0 8,4 8,0 8,10 8,10,

8, 1 8, 0, 4,1 ,
k

k k k k

c
v v v v

    

  


  
    
 

                                (1.13) 

10,1 10,4 10,2 10,2 10,1 10,1, 10,1 10,1,

10, 1 10, 2, 8,

(1 )
1 1 ,

k k

k k k k

c c
v v v v

     

   


   
     
 

 (1.14) 

min max

, , ,where   x y x y x y                                                                                                (1.15) 
3 3

, , 1

1 1

,n k n k

n n

u u u

 

                                                                                       (1.16) 

, , 10 1,x y ku                                                                                                   (1.17) 

, , 1,n k n ku u                                                                                                     (1.18) 

,0 ,   for  {1,2,3}.n n iu u n                                                                               (1.19) 
 
 If current state {0,2,8,10}j  is observed, initial condition 

kx  in (1.10) is assigned a pmf 
( 1,  and 0, )j j l l j     , and the next iteration for control update begins by solving the 

constrained optimization problem (1.9)-(1.19). 
 This corresponds to the closed-loop operation to be further discussed in the next 
subsection. Otherwise, the process iterates in open-loop based on the strategic model, and uses 
the resulting probability calculated from (1.6) with 0i   as the initial condition of the next 
optimization for control update. Note that the controlled Markov chain based on the strategic 
model does not involve feedback of the current state of any realization of the corresponding 
stochastic process.  
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1.3.2 Cost Structure 

1.3.3 Solution of Min-Max Optimization 

 
Unless the structure of the problem is exploited, non-linear min-max problems are extremely 
difficult to solve.  Generally, the objective function is maximized for each possible set of 
disturbances.  The solution is the set of disturbance values and maximization variables that result 
in the smallest value of the individual maximization problems.  Modeling the uncertainties as 
polytopes substantially decreases the problem's complexity.  When uncertainties lie within a 
polytope, the worst-case uncertainty is always located on one of the vertices [5].  Hence, it is only 
necessary to maximize the objective function for each vertex of the uncertainty set.  The number 
of vertices grows exponentially with the horizon length. 

The problem further simplifies by applying the following theorem from [3]: 
 

Theorem 1 (Bertsekas [3]) Let   be a closed convex set and let :f    be a convex 

function. Then if f attains a maximum over  , it attains a maximum at some extreme point of  . 

 
Similar relationships simplify robust receding horizon control of linear systems [5].  For 

the nonlinear set of relationships in (1.11), the theorem does not hold.  The structure of the 
problem allows for feedback linearization [10].  The transition coverage variable are replaced by 
substituting 

, , ,h k h k j ku s v  and , 3, ,1 h k h k l ku s v   where 1,2,3h   and j , l  are selected to 

cancel the cost-to-go term in term corresponding to control variable ,h ku  or ,1 h ku , respectively.  
An addition set of restraints requires that 

, , 3, ,1h k j k h k l ks v s v  .  The critical relationship 
between uncertainty sets, (1.11), is now convex and, more specifically, affine. 

The structure of the problem is further exploited to reduce the size of the optimization 
problem.  The optimality equations of a Markov decision problem are typically constrained by 
equalities.  Due to the desire to minimize the cost (and a lack of any competing force) at every 
stage of the problem, the constraints in (1.11) are relaxed to inequalities forcing a lower bound on 
the minimization.  The worst-case scenario is enforced by providing an inequality constraint for 
each vertex of the uncertainty set.  Bertsekas' theorem provides that only this worst-case need be 
found along each point of the horizon.  The number of constraints in the problem now grows 
linearly with the horizon. 

1.3.4 Closed-Loop Control with SimEvents Model in the Loop 

 
This subsection discusses the on-line computation of control policy based on the observed 
strategic state. State-feedback requires implementation of the discrete state stochastic process as a 
superposition of Poisson arrival processes. Simulation of the process is performed under the 
Simulink environment [15] using the discrete event simulation package SimEvents [14]. 

Let ,l nT  denote the state holding time at strategic state {0,2,8,10}l  before transitioning 
to n , and t  denote the time state lX  is entered. It can be shown that ,l nT  obeys the following 
distribution [9]: 

, ,

,

[ ( ) ( )]
( | ) 1 , 0,l n l n

l n

m t m t

TF t e


 
  

                                 (1.20) 

where , ( )l nm t  is specific to event ,l ne . For example, corresponding to transition rate , , ( )l n l nc t  

, , ,
0

( ) ( ) .
t

l n l n l nm t c d                                               (1.21) 
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Upon entering l , occurrence times of all activated events can be calculated using the inverse 
transform method based on (1.20). By setting the right hand side of (1.20) to a random number, r  
sampled from a uniform distribution defined on [0,1] , random occurrence time , ,l n l nT   can be 
solved.  

Let { ( )}kμ π  denote the control policy derived from the receding horizon control problem 
(1.9)-(1.19) for each initial condition assigned and 

, ( )l q k π  denote the component of ( )kμ π  
(which can be 

, ( )l q kc t , 
,1 ( )l q kc t , or 1 ) associated with transition from current state 

{0,2,8,10}l  to next state qX . In an open-loop setting, initial condition 
kπ  in (1.10) is 

computed using (1.20) driven by 
1( )kμ π . In a closed-loop setting, initial condition 

kπ  is an 
assigned probability mass distribution function 

l  ( 1,  and 0, )l q q l     , where state lX  
is observed from the stochastic process driven by 

1( )kμ π . The process terminates if 1l   or 
4l  . 

The need for the on-line update of the control variable 
, ( )l qc t  complicates the 

computation of the next state transition time because 
, ( )l qm t  is known only up to the time the 

control variable that depends on the random strategic state is updated. If the strategic state 
information is acquired as frequently as control update, the solution for 

,l q  can be searched at 
each iteration as follows. Setting the right hand side of (1.20) equal to [0,1]r U  results in  

, , 1( ) ( ) , 1,2, ,i

l q l q k i kg t t i t t      π                         (1.22) 
where 

1

, , 1 , 1 ,

0,

log(1 ) 1 1
( ) ( ) ( ) ( ).

i
i

l q l q k i l q k l q k p

pl q

r k i k
g t t  

   



   



   
      

 
π π π       (1.23) 

Solution 0   exists as soon as the right hand side of (1.23) becomes nonnegative. Based 
on this observation an algorithm is established that calculates the state holding time at l  and the 
next state nX . A sample execution of Algorithm 1 is illustrated in Fig. 3. 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3  An execution of Algorithm 1.  Both  
,l qt   and ,l nt   result in a state transition 

before the next control update.  However, the 
event associated with ,l nt   occurs first. 
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Algorithm 1: 

1) State l  is entered at 
1 ; 0;k kt t t i     

2) 1;i i   
3) Calculate 

, 1( )l q k i  π  by solving (1.9)-(1.19); 

4) If 
, 1 ,( )( ) ( )i

l q k i l qk i g t    π  for all q , then iterate on the next control update: i. 
Goto 2; 

5) Otherwise iterate on the next feasible transition: 
i. 

,min ;q l qt t    
ii. 

,argmin ;q l qn   
iii. Goto 1; 

 
Example samples paths of the algorithm under nominal parameters are available in 

[20,17]. 
 

1.3.5 Results 

 
1.3.5.1 Open-Loop Policy 

 

Open-loop simulations are conducted using the nominal values of Blue's rates, 
0,2 2,1 10,1 8,10, , ,  and ,     in Table 1 and uncertain Red rates, 0,2 2,1 10,1 8,10, , ,  and ,     within the 

range 
, , ,0.5 3x y x y x y    . The uniform rate is set to 1   hour which corresponds to a sampling 

rate of one hour. 
minconf , provided in the Optimization Toolbox of MATLAB [13], solves the 

nonlinear optimization problem at each step of the horizon. 
 

 
 

Figure 5 The optimal, open-loop probability 
trajectory solved under nominal parameters of 
the air operation. 

 
 
 
 
 

 
Figure 4 The optimal, open-loop control 
trajectory solved under nominal parameters of 
the air operation. 
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Figure 6 The optimal, open-loop probability 

trajectory solved with uncertain transition rates 
in the air operation. 

 
Figure 7 The optimal, open-loop control 

trajectory solved with uncertain transition 
rates in the air operation. 
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Figures 4 and 5 plot the nominal, optimal control and probability trajectories without 

consideration for uncertainties.  With uncertainties in the optimization, the results are plotted in 
Figures 6 and 7. The probability trajectories in Figure 7 are calculated for the worst-case 
uncertainties.  Even given the possibility of uncertainties with the model, the control trajectory 
demonstrates its robustness by remaining the same in Figures 5 and 7.  The plots indicate that 
Blue wins 83.72% of the time under nominal parameters.  Under the worst case uncertainty, Blue 
is only able to achieve victory 72.98% of the time. 
 
1.3.5.2 Closed-Loop Policy 

  

 
                   Table 4 Probabilities of Victory Under Nominal Parameters and Closed- 
                                                              loop Policy.                    
 
 
 
 
 
Table 4 contains the results of the closed-loop simulations.  Both the nominal and robust policies 
are solved and executed against the air-operation model.  The results are averaged over 1000 
event simulation based on the Law of Large Numbers [6].  In this case, accounting for 
uncertainties slightly reduces the performance of the air operation.  This reduction is small 
considering that advantages of robust planning. 
 

2. Robust Tasking of Wireless Airborne Networks 

 
The objective of the proposed research is to develop robust tasking policies for a network of 
clustered airborne vehicles deployed to carry out an ISR (intelligence, surveillance, and 
renaissance) mission in a hostile environment. These vehicles function as a part of a C3 
(command, control, and communications) assembly. We envision an architecture where each 
cluster has multiple vehicles in formation. They cooperatively perform their tasks, among them 
cooperative communications, in the face of loss of vehicles, fading of channels, and intercept of 
information by adversaries. 

Task allocation of airborne vehicles has gained much attention recently [21]. Examples of 
tasks include target conformation, target removal (by strike craft), and confirmation of the 
removal, as considered by Bailey, Tavana, and Busch [22]. This research proposes to resolve two 
important remaining issues that pertain to task allocation. The first issue is associated with 
communications among the clusters. This issue has been, to varying degrees, trivialized in the 
task-allocation research. The second issue is the consideration of uncertainties in the evolution of 
an air operation, which greatly impact the outcome of task allocation. A major source of such 
uncertainties is attributable to the lack of reliability and security in communications, especially in 
the presence of adversaries. 

The focus of our effort during the first summer for this 3-year research project is on 
establishing a framework for our study, suitable for the design of tasking policies for clustered 
cooperative activities in a dynamic uncertain environment. Since secure and reliable 
communication is essential in this setting, tasking is to be confined to that relevant to cooperative 
communications.  

Policy Win Percentage 

Nominal Policy 
Robust Policy 

86.10% 
84.07% 
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In order to set up the multi-hop clustered cooperative transmission framework, in Section 

2.1 we first set up models for single-link transmissions, where we consider especially two 
clustered single-link transmission schemes: conventional beamforming and a new secure 
transmission scheme. Then in Section 2.2 we set up a model for multi-hop wireless transmission, 
and by integrating with the clustered cooperative single-link transmission schemes, we outline a 
multiple objective optimization framework to determine networking parameters. These models 
and optimization frameworks are then studied numerically by simulations in Section 2.3. In 
Section 2.4 we include network reliability as a new objective when formulating the multiple 
objective optimization frameworks. Finally, a conclusion is given in Section 2.5. 

2.1 Single-link transmission models 

 
In this section, we set up and compare single link transmission models. Specifically, we first 
introduce a new secure transmission scheme [23], and then describe the conventional 
beamforming [24]. Both of them are clustered cooperative transmissions using distributed 
communication nodes with single antenna. The models are described based on the comparison 
with the conventional single-antenna transmissions [25]. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 With a new clustered 
cooperative secure transmission scheme, 

Alice can transmit signals to Bob 
securely against eavesdropper Eve. 
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2.1.1 A clustered secure transmission scheme  

 
Consider a cluster of J  transmitters, each transmitter having a single transmit antenna. This 
cluster of transmitters transmits a data packet to another cluster of J  receivers, each with a single 
receiving antenna. We assume that the transmitters or receivers may not share their received 
signals within cluster for joint receiving processing (because otherwise the bandwidth required 
for sharing raw sample data may be too high). But they can exchange data packet or control 
information so each receiving antenna has to process its received signal alone. 

The received signal in our secure transmission scheme can be written as 
( ) ( ) ( ) ( )Hy n n b n v n h w                          (2.1) 

where ( ), ( ), ( )y n b n v n  are scalar received sample, transmitted symbol, and noise sample, 
respectively. , ( )nh w  are 1J   vectors of channel and secure transmission encoding vectors, 
respectively, i.e.,  

1 1( )

, ( )

( )J J

h w n

n

h w n

   
   

 
   
      

h w  .                                           (2.2) 

 The actually transmitted signal can be written as 
( ) ( ) ( )n n b nx w .                                                     (2.3) 

So the transmission power depends on the correlation matrix of the vector ( )nx .  
 
 
The encoding vector is calculated based on the channel information. Note that the 

receiver can get channel information from channel feedback or channel reciprocity. One of the 
detailed forms for calculating the encoding vector is as follows  

( )
( ) ( )

( )

H

i i i

i

i

a n
n n

n

 
  

 

f z
w P

z
                                           (2.4) 

where the J J  matrix ( )i nP  is a permutation matrix whose function is to insert the first row of 
its following vector into the thi  row, and the rest of the variables are 

 

 

*

1 1 1

1 1 1

1
,

1

( ) ( ) ( ) ( ) ( )

i

i

T

i i i J

i

T

i i i J

a
h

h h h h
h

n w n w n w n w n

 

 







h

f

z

 

 

                         (2.5) 

 
With such an encoding method, the received signal at the targeting user (who has channel h ) 
becomes 

( ) ( ) ( )y n ab n v n                                                  (2.6) 
So the receiver can detect the symbol simply as  

1ˆ( ) ( )b n a y n .                                                   (2.7) 
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The receiving performance in terms of SNR or BER is the same as a conventional 
beamforming with J  receiving (or transmitting) antennas. We can use as comparison basis the 
single-antenna to single-antenna transmission‘s SNR   and BER 

eP . The BER and SNR relation 
ship of this single antenna case can be the following approximations: 

~ ( )eP Q   (in AWGN channels)   or    1~eP    (in fading channels) 
In our secure transmission, according to the concept of array gain, the average SNR of 

the targeting receiver will be 
secure J                                                       (2.8) 

when we use BER as evaluation metric, the BER in our case becomes 

,secure ~ ( )eP Q J .                                             (2.9) 
However, we may also use the following as approximation: 

,secure ~ J

eP                                                      (2.10) 
from which we can clearly see the advantage of diversity J  (which equals to the number of 
transmit/receive antennas). Therefore, the secure transmission can enhance the secure link‘s SNR 

or reduce the secure link‘s BER.  
The cost paid is a higher transmission power. Let the conventional single-antenna to 

single-antenna‘s transmission power be 
tP . Then the secure transmission method‘s transmission 

power can be approximately written as 
,secure (2 1)t tP J P  .                                                  (2.11) 

Note that this transmission power can be in general from 0 to infinity. Its size depends on the 
parameters we used in calculating the encoding vectors ( )nw . But the above equation is a typical 
value for some typical choice of the parameters. 

 
 
 
Obviously, using clustered secure transmission means longer transmission distance 

because increased SNR (or reduced BER), which also means that the number of hops in the 
network will be smaller. This will save some transmission power. But we still expect a relatively 
higher total power used when compared with single-antenna transmissions. 

Another point is that each secure transmission can be made only from a cluster of J  
transmitters to ONE of the receivers in the receiver cluster. This is because we have assumed that 
the receivers do not share raw received signals for joint processing. Therefore, the same data 
packet has to be transmitted J  times in order for all the receivers in the next cluster to have the 
same data. This will boost the total transmission power of one link from ,securetP  to  

,each secure link (2 1)t tP J J P  .                                       (2.12) 
 

Note that such repeated transmission also means a J  fold reduced throughput (or data 
rate, or bandwidth efficiency) for the secure transmission. If the data rate of the single-antenna to 
single-antenna transmission is R , then the secure transmission would have data rate 

secure

R
R

J
 .                                                       (2.13) 
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The above development is based on the assumption that each secure transmission has the 
same data rate as single-antenna transmission, but has a longer transmission distance. So the 
higher transmission power is paid on longer distance and security. An alternative way to 
describing such relationship is to assume that the transmission distance of the secure transmission 
keeps same as single-antenna transmissions, so it can use a lower transmission power, or use a 
higher transmission data rate.  

For all other users, the received signal can be written as 
( ) ( ) ( ) ( )T

e e ey n n b n v n h w .                                        (2.14) 
The vector 

eh  is the channel vector of the eavesdropper, and it is statistically independent from 
the encoding vector ( )nw . As a result, the random encoding vector ( )nw  will randomize the 
eavesdropper‘s signal, which makes the eavesdropper impossible to detect the symbols ( )b n , 
hence the guaranteeing of transmission security.  

The SNR of the eavesdropper is not meaningful. In fact, following the concept of 
beamforming (attenuating the eavesdroppers‘ received signal strength), then the SNR of ( )ey n  is 
actually increased by 2 1J  . However, because the eavesdropper can not resolve the random 
vector ( )nw , such SNR is useless. However, this observation indicates another problem: the 
secure transmission may interference other hop transmissions because its interference is stronger 
in longer distances. When we take multi-hop multi-packet simultaneous transmission into 
consideration, we may need to address this issue. However, this can be skipped if we just 
consider one packet data forward along one multi-hop path.  

 
 
 

 

2.1.2. Clustered beamforming transmission scheme 

 

Besides using the advanced secure transmission scheme, the clustered transmitters may also use 
conventional beamforming. In this section, we consider a typical beamforming scheme: transmit 
beamforming, i.e., the clustered transmitters utilize the channel knowledge to strengthen the 
signals targeting a desired user, while simultaneously attenuating signals to all the other uses. 
Transmit beamforming can usually achieve optimal beamforming results, albeit the requirement 
of channel knowledge means certain channel feedback has to be implemented which causes extra 
complexity.  
 
 
 
 

Figure 9 Illustration of beamforming transmission scheme 
where a clustered distributed transmission node forms a 

virtual transmit antenna array. 
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Consider a transmit cluster with J  transmitters, which transmit the same data packet 
(possibly with certain different encoding) to another cluster of J  receivers. While the J  
transmitters can do some joint encoding because they have the same data packet information, we 
assume each of the J  transmitters can only conduct receiving and decoding independently. Joint 
decoding requires the receivers to cross talk for information exchange, which consumes extra 
bandwidth and power resource. Therefore, we consider multi-input single-output (MISO) 
transmission model, instead of the more general multi-input multi-output (MIMO) model.  
 

Each of the J  transmitters knows the symbol sequence ( )b n  to be transmitted. Each of 
them can do some appropriate encoding before transmission. In a conventional transmit 
beamforming, the transmitters utilize the knowledge of the channels, which may be obtained via a 
channel feedback procedure, i.e., the receiver estimates the channel and sends back to the 
transmitter. Let the baseband discrete channel from the transmitter i  to the receiver be 

ih , where 
1, ,i J  . Then the transmitter i  just transmits the signal 

*( ) ( )i ix n h b n .                                                       (2.15) 
The receiver then receives signal 

1

( ) ( ) ( )
j

i i

i

y n h x n v n


  .                                             (2.16) 

Define the channel vector and signal vector as 
1

J

h

h

 
 


 
  

h  ,      
1( )

( )

( )J

x n

n

x n

 
 


 
  

x  ,                                      (2.17) 

respectively. Then the signal model can be deducted as 
2

( ) ( ) ( ) ( ) ( )Ty n n v n b n v n   h x h .                               (2.18) 
In order to detect the symbol ( )b n  from the received signal ( )y n , the receiver just needs 

to estimate the channels 
ih , calculate 2

h , and evaluate 2
( )y n


h  as the estimation. 

In order to evaluate the performance of the beamforming scheme, without loss of 
generality, let us assume the channels 

ih  are independent complex Gaussian random variables 
with zero mean and unit variance. This is reasonable for the distributed transmitters in a cluster 
because their positions and distances are different and random which causes the phases of their 
signals to be independently random when arriving at the receiver. This is one of the major 
differences of the MISO beamforming model when compared to the more traditional phased-
array beamforming model in which the phase differences among the array elements can usually 
be assumed as deterministic or identical.  
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As a comparison basis, we first list the transmission parameters for the case of single 
transmitter to single receiver transmission. In this case, the transmission power can be denoted as 

2

t bP  , and the SNR is 2 2

b v   , where 2

b  and 2

v  are the variances of the random symbol 
sequence ( )b n  and the noise ( )v n , respectively. The bit-error-rate (BER) can be described 

approximately as 1

eP    or  eP Q  . We also assume the data rate in this case to be R .  

Now for the transmit beamforming case, the overall transmit power is 
2

,beamform ( )t tP E n JP  
 

x ,                                       (2.19) 

 
 

which means the transmit beamforming uses J  times more transmission power. In other words, 
each of the J  transmitters simply keep the transmission power 

tP . In this case, the SNR becomes 
2

2

beamform 2

|| || ( )

( )

E b n
J

E v n
 

 
  

 
 
 

2
h

.                               (2.20) 

In fact, we usually prefer to use another equivalent description, i.e., we can also say that 
the transmit beamforming scheme can use just an overall transmit power 

tP  (the same as the 
single-transmitter case) 

,beamformt tP P                                                    (2.21) 
 to realize a J  fold increase of SNR to J  

beamform J  .                                                    (2.22) 
Then BER can be then be calculated as 

,beamform

J

eP     or   eP Q J .                               (2.23) 

The data rate is still R  in the transmit beamforming.  
Now consider the eavesdropper which similarly uses just one receive antenna. The 

received signal can be written as  
( ) ( ) ( )T

e ey n n v n g x                                           (2.24) 
where  1

T

Jg gg   are the channel coefficients from the J  transmitters to the 
eavesdropper. The channel coefficients 

ig  can also be modeled as independent Gaussian random 
variable with zero mean and unit variance, and are independent from the desired user‘s channels 

ih . The signal ( )ey n  can be rewritten as 

* *

1

( ) ( ) ( ) ( ) ( )
J

T

e e i i e

i

y n b n v n g h b n v n


 
    

 
g h .                      (2.25) 

The SNR of the eavesdropper can be evaluated as 
2

*

1

J

e i i

i

E g h J  


 
  

  
 ,                                              (2.26) 

which means that when the transmitters spend power 
tJP , the eavesdropper can achieve an SNR 

J  while the desired user has SNR 2J  . 
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In other words, if the transmitters just use an overall transmission power 
tP , then the 

eavesdropper can only have an SNR  , while the desired user‘s SNR is J . The desired user 
always has the diversity gain J  over the eavesdropper. This fact can be exploited by the transmit 
beamforming to enhance transmission security. If the transmission security is the objective, then 
the beamforming scheme allows use-to-use a lower transmission power to reduce the 
eavesdroppers‘ SNR while keeping the desired user‘s SNR unchanged.  

The eavesdropper‘s BER can be evaluated similarly as last section by using the SNR 

results.  
Note that this result is more desirable than the beam-width concept of the traditional phase-

array beamformer. However, this result is based on the assumption that the channel coefficients 
are completely independent. As long as the distance between two antennas is larger than a half of 
the carrier wavelength, this independence assumption is valid. 

2.1.3 Miscellaneous issues regarding security and reliability 

 
2.1.3.1 Complexity of exhaustive-search attack to the secure transmission scheme 

 
For our secure transmission scheme, it is proved that any adversary can not do a meaningful 
attack based on channel estimation or symbol estimation. Therefore, the only way left for the 
adversary is to do an exhaustive search of the targeting user‘s channel. If the adversary can 
accidentally find the targeting user‘s correct channel coefficients, and if the adversary can 
successfully estimate and remove its own channels, then the adversary can exploit the channel 
knowledge to recover the transmitted signals. Obviously, the practicability of this attacked relies 
on the complexity of the exhaustive search of the target user‘s channels.  

The target user‘s channel is unknown to the adversary, or can be assumed to be random 

to the adversary. The only way left for the adversary is then an exhaustive try of all possible 
channel coefficients. The target user‘s channel has J  complex coefficients, which leads to the 
guess of 2J  real numbers. In addition, in order to obtain a meaningfully low bit-error-rate (BER) 
after this attack, the accuracy of the guessed channel coefficients must also be high enough. For 
example, in order to guarantee a BER of 310 , the accurate must be equivalent to a quantization 
level of 32. In other words, each real value of in the channel coefficients must be quantized by 5  
bits. In this example, we find that the complexity of the exhaustive search is 

102 JC                                                           (2.27) 
which means the search space is on the order of 102 J . The larger the number of transmit antennas 
J , the higher the complexity of the exhaustive search attack. We can put this constraint into the 
optimization of the clustering problem. 
 
2.1.3.2 Effect of lost nodes in a transmission cluster 

 
The conventional beamforming is fairly robust to loss of clustering nodes. If one or more 
transmitting nodes in a cluster is lost, then we will just have a graceful degradation of 
performance. Specifically, if k  of the J  nodes are missing, then the transmission is reduced to 
( )J k  transmitter beamforming instead of the original J  transmitter beamforming. 
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However, to our secure transmission scheme, the loss of node effect is more severe than 
the conventional beamforming. Recall the encoding vector of the secure transmission scheme 
(1.4). The targeting user requires the complete coherent multiplication of the channel coefficients 
and also the complete cancellation of the random coefficients ( )i nz . This can be inferred from 
the multiplication of the targeting receiver‘s channel h  and the encoding factor ( )nw , which is 

* * *

1, 1,

ˆ( ) ( ) ( )
J J

H

i i j j j j

j j i j j i

n h a h w n h w n
   

   h w                        (2.28) 

where we use ˆ
jh  to denote the channel coefficients used in calculating ( )nw , and ( )jw n  are the 

entries of random vector ( )i nz . If there are some nodes lost during transmission, this is 
equivalent to some *

jh  becomes zero.  

If it is the thi  node, the most important node, becoming lost (or the thi  rows becomes 
zero), then the targeting receiver can not decode the signal successfully because the transmitted 
signal becomes zero. Fortunately, because the row selection in ( )nw , specifically the 
permutation matrix ( )i nP  changes symbol by symbol, the loss of this important node in the 
cluster will cause an increase of BER to 1 J .  

On the other hand, if it is any node other than the thi  node that becomes lost, then this is 
equivalent to that some terms of ( )jw n  can not be successfully canceled. Such remaining random 
factors will contribute interference to the detector. The size of the this interference can be roughly 
treated as having a signal-to-interference ratio  

1

1

J
SIR


 .                                                          (2.29) 

In general, if we have k  such nodes lost, then we would see the SIR reduced to  
J k

SIR
k


 .                                                         (2.30) 

 
2.1.3.3  A possible reformulation of secure transmission scheme for robustness to node failure 

 
From the analysis in Section 2.1.3.2, we have seen that the lost of the leading node (i.e., the thi  
node) may have a detrimental effect to the targeting receiver. The BER will be as low as 1 J  in 
this case. In order to mitigate this problem, we may need to put some redundancy into this case. 
The basic idea is that instead of choosing just one leading node, we may reformulate the problem 
into using k  leading nodes. This is equivalent to say that from within the J  transmitting nodes, 
we use J k  nodes to transmit interference, while using the rest k  nodes to transmit the 
information signal. 
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More specifically, we can select k  channel coefficients with indices 
1, , ki i , and 

calculate the encoding vector as 

 

 

1 1 1

1

1 1

1

, ,

, ,

, ,

, ,

1
( )

( ) ( )
1

( )

( )

k

k

k k

k

H

i i i i

i i
H

i i i i

i i

a n
k

n n

a n
k

n

 
 

 
 

  
 

 
 
 

f z

w P

f z

z










                                   (2.31) 

where the J J  permutation matrix 
1 , , ( )

ki i nP   is to insert the first k  rows of its following vector 
into the corresponding 

1, , ki i  rows, and the rest of the variables are 

1

*

1 1*

, , 1 1

1
, 1, ,

1
,   1, , ; { , , }

( ) ( ) ( ) ( ) ,   { , , }
k

i

i

i j J k

i

i i j J k

a k
h

h h h k j i i
h

n w n w n w n j i i

 

    

   

h

f

z











 

    

  

.                (2.32) 

With this reformulation, if there is a failing node in the k  leading nodes, then we lose 
1 k  useful information energy, while we have some interference that can not be canceled. Since 
usually the uncancelled interference may dominate the noise, we can evaluate the performance by 
the increase in SIR.   

In the sequel, we derive an approximate way to evaluate the SIR in this case. Assume that 
each transmitter transmit approximately similar power. Then the lose of m  of the k  leading 
nodes can be approximately looked as we have reduced the useful information power to k m  
while we have increased the interference power to m . Therefore, the new SIR in this case 
becomes 

k m
SIR

m


 .                                                         (2.33) 
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2.2 Multi-hop transmission models 

2.2.1 Transmission and receiving powers and security measure 

 
In Section 2.1, we focused on setting up models and performance metrics for single-hop 
transmissions, without even considering the transmission distance. In order to extend the 
consideration into multi-hop setting and to compare the effects of hop numbers, we have to 
consider the transmission power and transmission distances. 

 

 
For this purpose, we need first to clarify the relationship between the transmission powers 

defined in Section 2.1 (
tP , ,securetP , and ,each secure linktP ), and the transmission powers that we will 

define in this section. The transmission power and receiving powers can be illustrated as in the 
following figure. 

The powers we have defined in Section 2.1 are baseband transmit power 
tP  and based 

received power 
rP , where the attenuation is due to baseband channel h  (or small scale fading). 

The real transmission power and receiving power are defined as 
TP  and 

RP , respectively, which 
are connected by propagation attenuation as  

R TP P Kd                (2.34) 
where K  is a constant, d  is the propagation distance, and   is attenuation factor (normally 
within 2~4). After received the signal with power 

RP , the receiver will amplify it, which we can 
describe as t RP AP . Therefore, if we only consider small scale fading in a baseband channel 
model, then 

tP  is the modeled transmission power, not 
TP .  

A useful rule for us is that tP  and 
rP  are still linear with 

TP , which means increasing the 
transmission power 

TP  by a factor also causes the increasing of 
tP  and 

rP  by the same factor.  
 
 
 
 
 
 
 
 
 
 

 
Figure 10 Illustration of real transmission/receiving power and baseband transmission/receiving 

power model. 

22



 
 

 
Figure 11 Multi-hop transmission/receiving powers compared to direct single-hop 

transmission/receiving powers. 

 
2.2.1.1 A model for studying transmission power, transmission distance in multi-hop 

transmissions  

 
We would like to study the transmission/receiving power of multi-hop data forwarding (with L  
hops). Instead of using absolute power (in terms of dBm), it is more convenient for us to model 
the transmission power as a comparison with the direct 1-hop transmission from the source to the 
destination.  
  Let the distance between the source node and the destination node be D  meters. We may 
use a direct 1-hop transmission from the source node to the destination node, or we may employ 
relay nodes in the middle to form an L  hop packet forwarding. Let us assume that each node 
needs to have a received signal power 

RP  in order to detect the signal successfully.  
For the direct 1-hop transmission, the transmission power follows 

,R T DP P KD  ,                                                          (2.35) 
and the total transmission power in this case is just ,T DP . 

Now let use consider the thi  hop, for 0, , 1i L  , with transmission power ,T iP  and 
received signal power 

RP . We have  

,R T i iP P Kd  .                                                      (2.36) 
Then the transmission power of the thi  hop can be described by the transmission power ,T DP  as 

, ,
i

T i T D

d
P P

D


 

  
 

.                                                   (2.37) 

Total transmission power required for this L -hop relaying case is then 
1 1

,

, ,

0 0

L L
T D

T L T i i

i i

P
P P d

D





 

 

   .                                           (2.38) 

Note that the distances usually satisfy 
1

0

L

i

i

d D




 .                                                      (2.39) 
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Under this setting (with targeting received signal power 
RP ), we can then calculate the 

data rate (or transmission capacity) of the multi-hop link as  

2log 1 R
L

N

P
R

P

 
  

 
 (bits/sec),                                  (2.40) 

where 
NP  is the noise power which can be assumed identical for all receivers. This data rate is 

derived when we do not take any other interference and small scale channel fading into 
consideration. In other words, the direct 1-hop transmission can use total transmission power 

,T DP  to realize this data rate, while the L -hop transmission has to use total transmission power 

,T LP . 
As one of possible optimization problems for multi-hop data forwarding, we can look for 

the best hop count  L  and the optimal hop distances 
id , by using the available relay nodes, so 

that the total transmission power is the lowest. A dual optimization problem is to optimize L  and 
id  such that the data rate is optimal under a fixed total transmission power. My existing work on 

multi-hop relay is something similar to the latter, but I also take into consideration the mutual 
interference and cooperation among the relay nodes into consideration.  

 
2.2.1.2 A possible security measure: total broadcasting area 

 

In this subsection, we propose to use the broadcasting area as a possible security metric. The 
reason is that a transmission with longer distance or larger transmission power, can be heard by 
more nodes in a larger area, and thus increases its interception probability. More adversary nodes 
may be able to jam the signal. In addition, larger transmission power may potentially interfere 
more friendly nodes nearby. As a result, we need to confine the broadcasting area.  

For the direct 1-hop transmission with distance D, if 
RP  is the minimum required 

receiving signal power even for adversary nodes, then the broadcasting area is  
2

DS D .                                                            (2.41) 
For the L -hop transmission (with single transmitters), each hop transmission has a broadcasting 
area of  

2

i iS d .                                                          (2.42) 
Considering the overlaps of adjacent hops, we may approximate the total area as 

1 1
2

0 0

2 2

3 3

L L

L i i

i i

S S d
 

 

   .                                            (2.43) 
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2.2.2 The application of our secure transmission scheme in multi-hop 
transmission 

 

In this subsection, we analyze the transmission power and distances of our secure transmission 
scheme when used in this multi-hop relay scenario. In Section 1, we have presented it in a 1-hop 
transmission scenario. In that case, compared with the conventional single-antenna 
transmission/receiving that uses transmission power 

tP  to achieve a receiving SNR  , our secure 
transmission can use a transmission power ,secure (2 1)t tP J P   to get an SNR J . Considering 
the linearity between the transmission power and the receiving power (and SNR), this also means 

that our secure transmission needs a transmission power ,secure

2 1
t t

J
P P

J


  to guarantee the SNR 

 .  
Now let us apply our secure transmission scheme in the L -hop transmission. Because the 

secure transmission power relationship is derived based on small-scale fading, while the L -hop 
power relationship is made on large-scale fading, we need to connect them together. In other 
words, we need to consider that the received power 

RP  in large scale fading is connected to the 
transmission power 

tP  in small scale fading by 

t RP AP                                                              (2.44) 
where A  is the amplification ratio of the receivers‘ power amplifier.  

As stated in the above subsection, we need a transmission power ,T iP  for a transmission 
distance 

id . Let us assume that such as transmission power ,T iP  can also guarantee the SNR   
when considering the small scale fading. In other words, with a transmission power ,T iP , we can 
have a baseband transmission power 

tP . Then in order to guarantee a baseband transmission 
power ,securetP , we need a transmission power 

, ,secure ,

2 1
T i T i

J
P P

J


                                                (2.45) 

Note that even with the larger transmission power, the valid transmission distance is still 
id  (for a 

targeting received power 
2 1

R

J
P

J


 and SNR  ). In addition, the total number of hops is still L . 

The total transmission power in this case is  
1 1 1

,

, ,secure , ,secure ,

0 0 0

(2 1)2 1L L L
T D

T L T i T i i

i i i

J PJ
P J P J P d

J D





  

  


     .          (2.46) 

Note that the first J  multiplication factor is because each transmission has to be repeated by J  
time for each of the J  clustered receivers to receive the signal. 

The higher transmission power is expended completely for transmission security, not for 
transmission distance or data rate. However, it does change the interference range with respect to 
other nodes.  

The transmission date rate, if consider only large scale fading, is 

,secure 2

1
log 1 R

L

N

P
R

J P

 
  

 
,                                       (2.47) 

where the divider J  is still due to repeated transmissions. 
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Now let us include also the security measure. We must note that is may not be possible 
for the adversaries to intercept our transmission due to our secure design. However, the 
adversaries may still detect the existence of the transmission, or jam the transmission. Therefore, 
to some extent, we may still use the total broadcasting area as a simple security measure. 

If our secure transmission is used in this multi-hop transmission, then the increased 
transmission power brings a larger broadcasting area although the targeting transmission distance 

id  is still the same as the above.   
Recall that the power ,T iP  causes a broadcasting distance 

id  following 
,R t i iP P Kd  . So 

the new transmission power , ,secure ,

2 1
T i T i

J
P P

J


  should have a broadcasting distance ,secureid  

according to  
, ,secure ,secureR t i iP P Kd  .                                                (2.48) 

Therefore, the new broadcasting distance should be 

,secure

2 1
i i

J
d d

J


 

  
 

.                                               (2.49) 

The broadcasting area of the hop i  can be derived as 
2

2 2

,secure ,secure

2 1
i i i

J
S d d

J



 
 

   
 

.                                (2.50) 

Then the total broadcasting area of this L -hop secure transmission is 
21 1

2

,secure ,secure

0 0

2 2 2 1

3 3

L L

L i i

i i

J
S S d

J


 

 

 
   

 
  .                          (2.51) 

For network optimization, we need to determine the hop count L , the cluster size J , and 
the hop distances 

id , so as to increase data rate 
LR , reduce total transmission power ,T LP , or 

reduce total broadcasting area 
LS . 

In summary, for the conventional multi-hop transmission with single transmitter/receiver, 
we have the optimization problem 

2

1
,

,

0

1
2

0

1

0
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max log 1

                 min
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 For our secure transmission (or the clustering case), we have the optimization problem  
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Note that the former is a special case of the latter when 1J   (unclustering). In particular, when 
optimizing the data rate 

LR , we may just need to assume certain 
RP , 

NP  (large scale fading 
case), or single-antenna transmission rate R  values as basic unit.  

Note that we have the constraint 1id   because otherwise, we may get unrealistic results 

R TP P . 

2.2.3 The application of beamforming scheme in multi-hop transmissions 

 

When applying the beamforming scheme in multi-hop transmissions, the related performance 
evaluation rule can be derived similarly as Section 2.4. We assume that the receiver require 
baseband (when considering small-scale fading only) SNR   and require passband (when 
considering large-scale fading only) received power 

RP  in order to work, for both single 
transmitter case and beamforming case.  

Let us consider first the transmission power. From Section 2.3, we know that in order to 
guarantee SNR   similarly as single-transmitter case, the J  transmitter beamforming scheme 
just needs a transmission power of 

tP J , which also means that RP J  and TP J  can be used. 
With such a reduced total transmission power, however, the valid transmission distance 

id  in 
each hop does not change. Specifically, if in single-transmitter multi-hop case, the thi -hop needs 

transmission power 
, ,

i
T i T D

d
P P

D


 

  
 

 to reach the transmission distance 
id , then in beamforming 

case, the reduced transmission power  
,

, ,beamform

T i

T i

P
P

J
                                                      (2.54) 

can still guarantee the valid transmission distance 
jd . This means that beamforming can save 

transmission power. An alternative explanation is that if we fix the transmission power, then 
beamforming can guarantee a longer transmission distance with targeting received signal power 

RP J  and SNR  . We use the former description because it more directly relates to our security 
criteria. 

The total transmission power is 
1 1

,

.beamform , ,beamform

0 0

L L
T D

T T i i

i i

P
P P d

JD





 

 

                                (2.55) 

The transmission data rate does not change in this setting, i.e., 
,beamform 2log (1 )LR   .                                       (2.56) 
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To eavesdroppers, the coverage area of this multi-hop beamforming scheme is smaller 
than that of the desirable user, because the SNR of eavesdropper is smaller than the SNR of the 
desirable user by a factor J . The baseband model will give the eavesdropper with an SNR  

e
J


  .                                                         (2.57) 

This reduction of baseband SNR must be compensated by the reduction of the valid receiving 
distance to 

1

,e i id J d


 .                                                    (2.58) 
Considering that each hop has a listening area 

2

, ,e i e iS d                                                     (2.59) 
we can approximate the total listening area as 
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   .                                     (2.60) 

Note that the factor 2 3  is added in consideration of the overlap between adjacent hops.  
In summary, for multi-hop beamforming scheme, we can have the following optimization 

problem to look for optimal hop number L , cluster size J , and hop distances 
id , 
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The optimization does look that larger J  is always better in the beamforming case. The 
cost paid for larger J  is the synchronization and coordination of larger clusters, which is not 
taken into consideration in our formulation. However, when J is constrained by the total number 
of agents, i.e., the larger the J, the smaller the L, the outcome of this optimization is the same as 
that resulted from (2.20) the new secure transmission configuration. Figure 14 shows the 
simulation results from a 100-node network with beam-forming.  
 
2.2.4 Another possible optimization framework 

 

In this section, we try to propose an overall optimization function, which optimizes parameters 
,, , ,i T DL J d P  for lower energy consumption and lower ratio of (adversaries‘) listening area and 

(authorized users‘)  sensing area. Specifically, we try to include the concept of sensing area into 
our optimization framework. 

We have seen in previous sections that using J -node clustered transmissions, we can 
reduce the adversaries‘ listening distance from 

id  (which is the authorized target‘s receiving 

distance) to 1

,e i id J d . This means that larger cluster is better for security. 
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If we consider the sensing range of the cluster, where each node of the cluster may be a 
sensor, and we may assume that the cluster may conduct certain joint processing to extract the 
sensed information. According to the beamforming theory, the J -node cluster will provide a J -
fold increase of sensing SNR. As a result, the valid sensing range becomes as larger as 

1

,s i id J d .                                                         (2.62) 
The sensing coverage, or the sensing area, of the thi  cluster is thus 

2

, ,s i s iS d ,                                                         (2.63) 
and the total sensing area is 

21 1
2

,

0 0

2 2

3 3

L L

s s i i

i i

S S J d
 

 

   .                                              (2.64) 

This equation leads to the conclusion that large cluster size is also better for increasing sensing 
coverage. 

Instead of considering many different optimization objectives, we may just consider two 
of them. The first is the overall energy consumed, which equals to the transmission power times 
the transmission duration, and we can simply use the transmission power divided by the 
transmission data rate as the energy criteria.  

For this purpose, we first need to parameterize the transmission data rate, or the SNR 
equation. Our deductions in the previous sections are all based on the assumption that the overall 
SNR is identical between the 1-hop direct transmission and the multi-hop transmissions with or 
without beamforming. In this case, the SNR can be described by 

,T DCP D   .                                                 (2.65) 
Then the energy consumption is described by 
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As to the second criteria, we use the ratio between the listening area and the sensing area, 
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Then the overall optimization criteria is to minimize both 
beamformE  and 

beamformA , which becomes 

, 1 2min ( , , , )i T D beamform beamformF L J d P E A                                     (2.68) 
under constraints 
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Note that M  is total number of nodes available.  
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2.2.5 Channel failure probability 
 
Network reliability studies require the channel failure probability model. In this subsection, we 
derive the channel failure probability as an outage probability, which is defined as the received 
signal‘s power is less than a power threshold and thus causes the loss of transmitted signal. We 

assume that the underline reason of this channel failure is the random channel fading, from which 
we can derive the explicit expression of the channel failure probability as an exponential function 
of the propagation distance. 

Let the transmit power be 
TP , and transmission distance be d . Trom the large-scale 

propagation attenuation, the received signal power is R TP P Kd  , where K  and   are a 
constant and the signal attenuation exponential factor.  

Now we need to consider the small scale fading. Let the receiver has a power 
amplification ratio A . Then purely from the small scale fading model, we can model the 
transmission power as t R TP AP AKP d   . Let the small scale fading channel be h , which is a 
complex Gaussian random variable with zero mean and unit variance. Then the received signal‘s 

power is 
22| |r t TP P h AKP d h  .                                    (2.70) 

We define the channel failure as an outage probability, 
0[ ]rP P P                                                       (2.71) 

which denotes that the received signal‘s power is less than a power threshold 
0P . Then we have 

2 0
0[ ]r

T

P
P P P P h d

AKP

 
   

 
.                                     (2.72) 

Because 2
h  is an exponential random variable with unit mean, the above probability can be 

evaluated as 
00

0
0

[ ] 1 TT

PP dd
AKPxAKP

rP P P e dx e

 
    ,                                  (2.73) 

which shows that the channel failure probability is an exponential function of the propagation 
distance d  (more exactly, d ). 

2.3 A numerical example 

 

In this section, we use a numerical example to demonstrate the multi-hop wireless network 
optimization problem. Considering that we are more concerned about the transmission data rate 
than the transmission power, we put transmission power as a constraint while optimizing 
transmission data rate and the adversary‘s listening area. 

Before we go into simulation details, the observation of the numerical evaluation is 
summarized as follows 

 For non-clustered multi-hop transmissions, if we fix the transmission power of each 
node, then more nodes and thus more hops are always better for enhancing data rate, but 
are always worse for reducing listening area. As a result, there is an optimal hop or node 
account that can optimize both data rate and listening area.  

 For clustered multi-hop transmissions, if we fix the total number of nodes and the 
transmission power of each node, then smaller cluster size and more hops are always 
better for both enhancing data rate and reducing listening area. This means that the 
optimization always favors non-clustered multi-hop transmission that uses all available 
nodes as relays. 
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The simulation parameters are as follows: 
 Constant 56.3 10K   , which is calculated from a carrier frequency 3  GHz, unit 

antenna gains, with equation 2 2(4 )t rK G G   ; 
 A fixed transmission power 20TP   watts for each node, which does not change even in 

clustered transmissions; 
 Overall transmission distance 50D   km, which denotes the distance from the source to 

the destination; 
 Propagation attenuation exponential factor 3  ; 
 A fixed noise power for each node 110NP    dBm; 
 A power threshold 

0 90P    dBm for listening, which also means a required SNR 20 dB 
for successful listening and receiving at data rate 6.66R   bps/Hz. 

 Total number of nodes in the network is 100M  , which includes one source, one 
destination, and 98 relaying nodes. 

 
Let us first see the direct transmission from the source to the destination without any 

relaying. The received power is 
1410 139 dBmR TP P KD      .                                          (2.74) 

which gives an SNR of 29  dB. This SNR does not satisfy the listening/receiving requirement, 
although theoretically the transmitter may use some special coding scheme such as spread 
spectrum to achieve a date rate of 29 10

0 2log (1 10 ) 0.0018R     bps/Hz. 
The adversary‘s effective listening distance in this case can be calculated from 

0 0TP P Kd  , which gives 
0 1.1 kmd  . So the listening area is 2

0 0 3.8A d   square km.  

2.3.1 Non-clustered multi-hop relaying 

 
If we use some or all of the relaying nodes, e.g., we use 2m   relaying nodes to form an 1m   
hop relay network, where 2 m M  . Since we have assumed that all the nodes have identical 
transmission power, the distance of each hop should also be identical for optimality. Therefore, 
the hop distance is 

, 0, , 2
1

i

D
d i m

m
  


 ,                                               (2.75) 

The received signal power of each hop node is 
3 14

, ( 1) 10R i T iP P Kd m     .                                              (2.76) 

The SNR is thus 
3

1

10

m  
 
 

. In order to satisfy the SNR constraint, we need 
3 20

10
1

10
10

m 
 

 
, 

which gives 48m  . In other words, we need to use a total of at least 48  nodes to form 47  or 
more hops in order to satisfy this SNR requirement. Nevertheless, the data rate of any m  node 
relaying transmission path can be calculated as  

3

2

1
log 1

10
m

m
R

  
   

   

,                                                      (2.77) 

which shows a monotone increasing of data rate when more relaying nodes are used. The highest 
available data rate is 

100 9.92R   bps/Hz when all the 100M   nodes are used and are placed in 
the optimal position (i.e., with an equal hop distance 50 (100 1) 0.5051id     km). 
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For the adversary‘s listening area, since the node transmission power is fixed, so the 
listening distance of each hop is still 

0 1.1 kmd  . Therefore, the total listening area is 
approximately 2

0 ( 1) 3.8( 1)mA d m m     square km. The more relaying hops are involved, the 
larger listening area.  

If we want to maximize data rate while to minimize listening area according to the 
following objective: 

3

2

1
max ( ) 0.1 log 1 0.003 3.8( 1)

10

m m

M M

R A m
f m m

R A

  
         

   

, 2, ,100m   .    (2.78) 

Note that we have to normalized 
mR  and 

mA  because of their big difference in values. The curve 
of ( )f m  as a function of m  is show in the figure below. Then the optimal solution is 38m   and 

( ) (38) 0.1473f m f  . Note that even in this case, the received signal‘s SNR is about 17  dB, 
still below the targeting SNR 20  dB, and the data rate is 5.69   bps/Hz.  
 
2.3.1.1 Multi-hop relay on a circle 

 
Instead of considering multi-hop relays in a straight-line, we may also be interested in 
considering the coverage of some other area shapes. In particular, we may consider the targeting 
coverage area as a circle. Let the total transmission distance still be D , and we need at least two 
nodes which forms at least two hops from the source to the source.  

 
 
When we use m  nodes to form an m  hop from the source to the source, then each node 

will have a transmission distance id D m . Note that instead of the circumference of a circle, we 
actually assume the total direct-line propagation distance is D . Then similarly as the straight-line 
case, the received power of each node is 3 3 3 14

, 10R i TP P KD m m    , which gives SNR 3( 10)m  

and data rate  
3

2log 1 10mR m  
 

. The listerning area can be similarly found as 
2

0 3.8mA d m m  . Therefore, the optimization problem is almost identical to the straight-line 
case. 

Because of such similarity, we only consider the straight-line case in the following clustered 
transmission studies. 

 
Figure 12 Optimization for multi-hop wireless transmission network with non-clustered 

transmissions. 
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2.3.2 Multi-hop relaying with clustered beamforming 

 
 
To simplify the problem, we fix the total number of available nodes to 100M  . Let the hop 
account be L , which means we have 1L   clusters (including the source cluster and the 
destination cluster) and each cluster has ( 1)J M L     nodes. The transmission distance of 
each hop is 

id D L .  
Since each node has a transmission power 

TP , the total transmission power of each 
cluster is thus 

TJP . If conventional beamforming scheme is used, such a total transmission power 
will cause a total received signal power 

,R i T iP JP Kd  . Considering that each receive node now 
has J  copies of the same signal, the small-scaling fading effect will contribute another J -fold 
increase of SNR. Specifically, the received signal power in the baseband small-scale fading 
model is 

 2 2

, , , ,1
| |

J

r i R i j i R i T ij
P AP E h JAP J AP Kd 


                                   (2.79) 

which gives a 2J -fold increase of the SNR to 
, 2 2 3 3( ) 10

R i T
beamform

N N

P P KD
L J J L J L

P P





   .                                (2.80) 

The transmission data rate in this case is thus 
2 3 3

2 2( ) log (1 ( )) log (1 10 )beamform beamformR L L J L     .                           (2.81) 
For the special cases that J M L , we can reduce the above equation to 

2 3 3 1 3

2 2( ) log (1 10 ) log (1 10 )beamformR L M L M J      , from which we can see that the data rate 
increases with more hops and smaller cluster size. In particular, the highest data rate is achieved 
when using 99 hops and one-node per cluster (non-clustered transmission). Such a highest data 
rate equals to 

100R  derived in Section 2.2.4. 
Now let us consider the adversary‘s listening area. According to the derivation in Section 

2.2, the listening distance is 
1 1

,e i i

D
d J d J

L
 

 

  .                                                       (2.82) 

 
Figure 13 Optimization for multi-hop wireless transmission network with beamforming. 
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Therefore, the total listening area can be approximated as 
2

1 21
2 2 13
,
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2 2 2
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 .                       (2.83) 

For the special cases that J M L , we can simplify the above equation to 
1 1 2

2 1 23 3 3
2 2

3 3
beamformA D J M D L M 

 
  , from which we can readily see that smaller listening 

area also prefers larger number of hops with smaller cluster size. In particular, the conventional 
single-node cluster (non-cluster) 1M   hop transmission gives the optimal result.  

From both the transmission rate and listening area results, we have seen that smaller 
cluster size and more hops are always better, if we have a fixed number of nodes to use. This 
conclusion can be demonstrated numerically be maximizing  
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                          (2.84) 

The numerical evaluation of ( )f L  is show in the following figure, which clearly indicates the 
favor of larger number of hops (and thus smaller cluster sizes). Note that the saw-tooth structure 
is due to the fact the some of the 100 nodes may not be used for many hop accounts. 

2.3.3 Multi-hop relaying with clustered secure transmission 

 

Instead of beamforming, we may consider asking each cluster to implement our secure 
transmission scheme to enhance transmission security. In this new transmission scheme, each 
cluster will have to use (2 1)J  -fold of total transmission power as the conventional single-node 
transmission, and the receiver will have a J -fold increase of SNR compared with the latter. Note 
that on average, each node in the cluster will have (2 1) / 2J J   fold of the single-node 
transmission power.  

For fair comparison, we will divide the total transmission power by a factor (2 1) /J J  
so as to ach node in the cluster still use the fixed transmission power 

TP . In other words, the total 
transmission power of each cluster is still TJP , just as the conventional beamforming. Then the 
receiver will see an SNR 

2
3 3

secure ( ) 10
2 1 2 1
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P K D J J
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
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

 
  

  
.                                 (2.85) 

With such an SNR, the transmission data rate is 
2

3 3

secure 2 secure 2

1 1
( ) log (1 ( )) log 1 10
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J
R L L L

J J J
  
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.                    (2.86) 

For the special cases that J M L , we can reduce the above equation to 
3

3

secure 2

1
( ) log 1 10

(2 1)

M
R L

J J J

 
  

 
, which also indicates smaller cluster size is better for 

enhancing transmission data rate.  
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As to the adversary‘s listening area, we have the listening distance  . (2 1)e i id d J J


  . 
Therefore, the total listening area is 

2 2 61
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For the special cases that J M L , we can simplify the above equation to 
6
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   , which also prefers smaller cluster size J  

for reducing listening area.  
From both the transmission rate and listening area results, we still see that smaller cluster 

size and more hops are always better, if we have a fixed number of nodes to use. This conclusion 
can also be demonstrated numerically be maximizing  

secure secure
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                 (2.88) 

The numerical evaluation of ( )f L  is show in the following figure, which clearly indicates the 
favor of larger number of hops (and thus smaller cluster sizes). Note that the saw-tooth structure 
is due to the fact the some of the 100 nodes may not be used for many hop accounts. 
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2.3.4 Network reliability 

 

Network reliability is now considered to set bounds for the above optimization problem. As an 
initial attempt, channels are assumed to be perfect, and only node failures are considered. A lower 
bound of a multiple hop network reliability was derived in [8]. With assumed high channel 
reliability, the lower bound becomes exact and is given by  

1

, (1 )
L J

J J s J s

i i

s ki

J
R R r r

s





 
  

 
  , J L N      (2.89) 

where r is the node reliability. The number of nodes J in a cluster is constrained by ( / )floor N L , 
where N is the total number of airborne nodes and L is the number of clusters in the network. 
 
 

 
 
 
 
 
 

 
Figure 14  Optimization for multi-hop wireless transmission network with clustered secure 

transmissions. 
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It can be seen that network reliability increases with increasing number of agents in a cluster 

when the total number agents is constrained at 100. In combination with the results of 
optimization that consider only security, power, and data rate, overall optimal clustering is to 
divide the 100 nodes into 25 clusters of 4-agent each.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 15 Network reliability as a function of time 
with cluster number as a parameter (Weibull node 

failure probability assumed, and minimum of 4 
surviving agents required for an operative cluster) 
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3. Conclusions 

 

In this report, we show our progress during the first summer of the project. We have successfully 
set up single-link and multi-hop wireless transmission models, for single node transmissions, 
clustered cooperative secure transmissions, and clustered cooperative beamforming 
transmissions. Based on such transmission models, multiple objective optimization frameworks 
for optimizing multi-hop wireless networking parameters are proposed. The objectives include 
transmission efficiency metrics such as SINR and data rate, network reliability metrics such as 
network lifetime, and network security metrics such as eavesdropper‘s listening area. The 

optimization parameters include the cluster size, hop account, hop distances, etc. Some 
preliminary analysis and simulations have been conducted, which indicates that such optimization 
is meaningful and necessary. This summer‘s work provides us with solid background for the 

subsequence work of this research.  
For the continuing work, an immediate task is to taken node competition into 

consideration, besides node cooperation for clustering and multi-hop data forwarding. This task is 
in fact in our work immediately after this summer. Node competition is quantified by the mutual 
interference among clusters. For the conventional single node multi-hop transmission, the SINR 
of each hop is derived, and this indicates a complex inter-connection among the transmissions of 
each hop. We are working on including clustered cooperative transmission into this scheme, and 
set up the optimization framework in order to compare the various networking parameters [26,2 
7]. 

Another task, as outline as the proposed second summer‘s work, we will focus on 

deriving a general network structure function to capture all aspects of expectations, under which a 
tasking policy is solved through, for example, a Markov decision process. More specifically, 
distributed optimization problem for cooperative transmissions and mode switching policy will be 
formulated and solved simultaneously. The general method of multi-hop network capacity and 
performance analysis will be extended to considering nodes or link reliability. We will develop 
efficient ways to evaluate the network reliability for multi-hop wireless networks under nodes 
cooperation and competition, which will then be integrated into the distributed optimization 
problem. In addition, a quantifiable notion of security will be defined, and the interplay between 
redundancy and security will be examined. 
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